aureus-insights_logo

All Posts

How Data Can Help Drive a Better Client Experience

Insurers have been using data to improve the customer experience of their policyholders for quite a while now. This data is typically explicit data that is gathered by asking policyholder specific questions. By gathering implicit data, insurers can now understand the sentiment of their customers at any given point of time during their customer journey, without even asking them.

Recently I was a panelist at an event titled "InsurTech Focus on the Customer" that was hosted by Insurtech HartfordAfter the event, I sat down with Kurt Thoennessen, CAPI who is Vice President of Ericson Insurance Advisors to discuss how sentiment analytics can be utilized to drive a better client experience.

 

 

Anurag Shah
Anurag Shah
Anurag Shah is CEO and co-founder of Aureus Analytics. He was the founding member and CEO for EdVenture prior to joining the leadership team at Omnitech, where he served as the COO and Head of Global Operations. Aureus Analytics is Anurag's second startup venture.

Related Posts

Explicit vs. Implicit Feedback in Insurance

Today, customers expect a personalized, unique experience. Millennials not only expect a superior experience but also expect their service provider to know in advance about the kind of treatment they prefer to receive. A critical step in delivering a unique experience is to know what your existing customers think about you and your services.

Listen to the “Voice” of your Customer

Virtual assistants like Siri, Cortana and Alexa as well as other speech synthesis techniques have solved many customer use cases by offloading repetitive and mundane searches or activities.  Customer-oriented businesses leverage this technique to provide better operational efficiency and improve customer experience. They can then run analytics over the voice/audio content to derive predictions.

6 Factors to Consider Before Building a Predictive Model for Life Insurance

If a life insurer wants to build a predictive model, how should they go about it?  In this article, we explore the factors that need to be considered before beginning actual model development. We will do this by using the example of predictive models for improving persistency. (Improving persistency for a life insurer means increasing the volume of business they retain.)